Sonlarni yaxlitlashdan fizika, matematika, texnikaning ko`pgina amaliy masalalarida har xil kattalik (miqdor)larning taqribiy qiymatlari bilan ish ko`rishda foydalaniladi.
Masalan,
dengiz sathida va
45◦
kenglikga jismlarning erkin tushish tezlanishi
9,80665 m/s2
ga teng. Odatda bu son o`ndan birgacha yaxlitlanadi:
9,8.
U bunday yozilad:
g
≈ 9,8 (o`qiladi:
g
taqriban 9,8
ga teng).
|
x ≈ a yozuv a son x sonning taqribiy qiymati ekanini anglatadi. |
1-
m a s a l a . To`g`ri tortburchak shaklidagi yer maydonining yuzi
25 m2
ga uning bo`yi
8 m
ga teng. Maydonning enini toping.
Maydonning
eni l
metr bo`lsin, bu holda
l = 25 : 8 = 3,125.
J a v o b .
3,125 m.
Amalda bunday natija, odatda, o`ndan birgacha yaxlitlanadi, ya’ni l ≈ 3,1 deb hisoblanadi.
Sonlarni yaxlitlash qoidasini quyidagi misolda qaraymiz. 3,647 sonini yuzdan birgacha yaxlitlash talab etilsin. Kami bilan yaxlitlash uchun oxirgi 7 raqamini tushurob qoldiramiz, natijada 3,64 ni hosil qilamiz.Ortig’i bilan yaxlitlash uchun oxirgi 7 raqamini tushurib qoldirib, undan oldingi raqamni bir birlikka orttiramiz. Natijada 3,65 ni hosil qilamiz.
Birinchi holda yaxlitlashning absolut xatoligi
|3,647 – 3,64| = 0,007
ga, ikkinchi holda
|3,647 – 3,65| = 0,003
ga teng.
Ikkinchi holdagi yaqinlashish xatoligi birinchi holdagidan kam. Demak, qaralayotgan misoldagi ortig`i bilan yaxlitlash ma`qul sanaladi.
Yaqinlashishning absolut xatoligi eng kam bo`lishi uchun musbat sonlarni yaxlitlash quyidagi qoidadan foydalaniladi.
|
Agar birinchi tushurib qoldiraladigan raqam 5 dan kichik bo`lsa, u holda kami bilan yaxlitlash kerak, agar, bu raqam 5 dan katta yoki unga teng bo`lsa, u holda ortog`i bilan yaxlitlash kerak. |
Masalan,
o`ndan birgacha yaxlitlashda
3,647 ≈ 3,6, 2,628 ≈ 2,7
ni hosil qilamiz; yuzdan birgacha yaxlitlashda
0,6532 ≈ 0,65, 9,0374 ≈ 9,04
ni hosil qilamiz.
2-
m a s a l a.
sonini
shu songa
0,01 gacha
aniqlikda teng bo`lgan o`nli kasr bilan almashtiring.
2 ni 7 ga bo`lish natijasida verguldan keyin uchta raqamli o`nli kasr ko`rinishida yozamiz.:
=
0,285… .
Bu sonni yuzdan
birgacha yaxlitlab,
≈
0,29 ni hosil
qilamiz.
Bu masalani
yechish uchun ning
0,01
gacha aniqlikdagi taqribiy qiymatini topishda uning verguldan keyingi uchta
raqamini topish kerak bo`ladi. Agar
sonining
0,001
gacha aniqlikdagi taqribiy qiymatini topish talab qilinganda edi, u holda
to`rtta o`nli raqamni topish kerak bo`lar edi.