1-
m a s a l a . Tenglamalar sistemasini yeching:
(1)
x
va
y
shunday sonlarki,
(1)
ning ikkala tengligi ham to‘g‘ri, ya’ni
x,
y
(1)
sistemaning yechimi bo‘ladi, deb faraz qilamiz.
Bu tengliklarni hadlab qo‘shamiz. Bu holda yana to‘g‘ri tenglik hosil bo‘ladi, chunki teng sonlarga teng sonlar qo‘shilayapti:
bundan
Endi x=5 ni (1) sistema tenglamalarining biriga, masalan, birinchi tenglamasiga qo‘yamiz: 7·5–2y=27. Bu tenglikdan topamiz:
35–2y=27, –2y=–8, y=4.
Shunday qilib, agar (1) sistema yechimga ega bo‘lsa, u holda bu yechim faqat ushbu sonlar jufti bo‘lishi mumkin: x=5, y=4.
Endi x=5, y=4, haqiqatan ham, (1) sistemaning yechimi ekanligiga ishonch hosil qilish kerak. Buni oddiygina tekshirish bilan bajarish mumkin:
7·5–2·4=27,
5·5+2·5=33.
Ikkala tenglik ham to‘g‘ri tenglik.
Shunday qilib,
(1)
sistema birgina yechimga ega:
x=5,
y=4.
Tenglamalar sistemasini yechishning ko‘rib chiqilgan bu usuli algebraik qo‘shish usuli deyiladi. Noma’lumlardan birini yo‘qotish uchun sistema tenglamalarining chap va o‘ng qismlarini qo‘shish yoki ayirish kerak.
2-
m a s a l a . Tenglamalar sistemasini yeching:
Birinchi
tenglamadan ikkinchisini hadlab ayiramiz:
bundan
y=3 ni sistemaning birinchi tenglamasiga qo‘yamiz: 5x+3·3=29
Bu tenglamani yechib, topamiz: 5x+9=29, 5x=20, x=4.
Javob:
x=4,
y=3.
Ko‘rib chiqilgan masalalardan ravshanki, sistemani yechishda algebraic qo‘shish usuli ikkala tenglamaning ham biror noma’lum oldidagi koeffitsiyentlari bir xil yoki faqat ishoralari bilan farq qilgan holda qulay bo‘ladi. Agar bunday bo‘lmasa, u holda sistemaning har bir tenglamasining chap va o‘ng qismlarini mos keladigan sonlarga ko‘paytirish yo‘li bilan biror noma’lum oldidagi koeffitsiyentlarning modullarini tenglashtirishga urinib ko‘rish kerak.
3-
m a s a l a . Tenglamalar sistemasini yeching:
Agar
sistemaning birinchi tenglamasining ikkala qismini
3
ga, ikkinchisini esa
2
ga ko‘paytirib, ikkinchi tenglamadan birinchisini hadlab ayirilsa, u holda
birdaniga x ning qiymati topiladi:
x=–6 qiymatni sistemaning birinchi tenglamasiga qo‘yib, topamiz: –18+2y=10, 2y=28, y=14.
Javob:
x=–6,
y=14.
|
Shunday qilib, tenglamalar sistemasini algebraik qo‘shish usuli bilan yechish uchun: 1) noma’lumlardan birining oldida turgan koeffitsiyentlar modullarini tenglashtirish; 2) hosil qilingan tenglamalarni hadlab qo‘shib yoki ayirib, bitta noma’lumni topish; 3) topilgan qiymatni berilgan sistemaning tenglamalaridan biriga qo‘yib, ikkinchi noma’lumni topish kerak. |
4-
m a s a l a . Tenglamalar sistemasini yeching:
1)
Birinchi tenglamani o‘zgarishsiz qoldirib, ikkinchi tenglamani
4
ga ko‘paytiramiz:
2) (3) sistemaning ikkinchi tenglamasidan birinchi tenglamani hadlab ayirib, topamiz: 11y=–22, bundan y=–2.
3) y=–2 ni (2) sistemaning ikkinchi tenglamasiga qo‘yib, topamiz: x+2·(-2)=–2, bundan x=2.
Javob:
x=2,
y=–2.